Фитнес для похудения

Фитнес дома. Комплексы упражнений, диеты, программы тренировок, советы экспертов

Из чего состоят аминокислоты. Суть аминокислот

07.11.2019 в 09:52

Из чего состоят аминокислоты. Суть аминокислот

Из чего состоят аминокислоты. Суть аминокислот

Продукты богатые важными аминокислотами

Протеин – это результат участия аминокислот и такие знания можно использовать для повышения эффективности тренировок. Нельзя забывать об этой основе, иначе успешного построения мышечной массы добиться будет невозможно. Принципы построения белков стали раскрываться с 1810 года, а полностью состав был расшифрован до 1930 года. По результатам исследования было обнаружено 20 аминокислот, которые и составляют белок. С помощью различной структуры молекул они участвуют в создании миллионов различных белков.

Характерное свойство аминокислот – это растворимость в жидкости и способность лёгкого вступления в химические реакции со щелочными и кислотными растворами. Суть разных аминокислот заключается в способности выступать регулятором метаболизма и в участии в строении клеток мышц. Каждая группа обладает собственным радикалом R, это помогает разделять их на группы по природе происхождения.

Если будет недостаточно 1 аминокислоты в составе, организм возьмёт её из запаса, но постепенно резерв исчерпается. При дефиците даже одного элемента можно столкнуться с тяжёлыми осложнениями, а о росте мышц можно забыть. За счёт других аминокислот не удаётся покрыть недостаток другого типа элемента.

В химии и биологии есть понятие биологически полноценных белков. Оно означает, что присутствуют все аминокислоты с активным действием, входящие в состав белков. Для получения полноценного питания организма стоит добавить в рацион бобовые культуры. Определить, какие аминокислоты входят в состав белков конкретного человека, в домашних условиях невозможно, судить можно только на основании симптомов. Для обеспечения биологической ценности белков нужно воспользоваться лабораторным исследованием, оно выявит, сколько видов аминокислот входит в состав белков и поможет скорректировать питание или назначить добавки.

После получения нужного количества аминокислот, они подвергаются многоэтапным преобразованиям, которые сделают их пригодными для построения белка. Минимальное количество преобразований проходит куриный белок из яиц, так как его состав идеально подходит для усвоения человеком.

Из чего состоят аминокислоты. Суть аминокислот

Протеиногенные аминокислоты. Двадцать аминокислот необходимы для синтеза белка

Среди многообразия аминокислот только 20 участвует во внутриклеточном синтезе белков ( протеиногенные аминокислоты ). Также в организме человека обнаружено еще около 40 непротеиногенных аминокислот. Все протеиногенные аминокислоты являются α- аминокислотами и на их примере можно показать дополнительные способы классификации.

По строению бокового радикала

Выделяют

  • алифатические (аланин, валин, лейцин, изолейцин, пролин, глицин),
  • ароматические (фенилаланин, тирозин, триптофан),
  • серусодержащие (цистеин, метионин),
  • содержащие ОН-группу (серин, треонин, опять тирозин),
  • содержащие дополнительную СООН-группу (аспарагиновая и глутаминовая кислоты),
  • дополнительную NH2-группу (лизин, аргинин, гистидин, также глутамин, аспарагин).

Обычно названия аминокислот сокращаются до 3-х буквенного обозначения. Профессионалы в молекулярной биологии также используют однобуквенные символы для каждой аминокислоты.

Строение протеиногенных аминокислот

По полярности бокового радикала

Существуют неполярные аминокислоты (ароматические, алифатические) и полярные (незаряженные, отрицательно и положительно заряженные).

По кислотно-основным свойствам

По кислотно-основным свойствам подразделяют нейтральные (большинство), кислые (аспарагиновая и глутаминовая кислоты) и основные (лизин, аргинин, гистидин) аминокислоты.

По незаменимости

По необходимости для организма выделяют такие, которые не синтезируются в организме и должны поступать с пищей – незаменимые аминокислоты (лейцин, изолейцин, валин, фенилаланин, триптофан, треонин, лизин, метионин). К заменимым относят такие аминокислоты, углеродный скелет которых образуется в реакциях метаболизма и способен каким-либо образом получить аминогруппу с образованием сответствующей аминокислоты. Две аминокислоты являются условно незаменимыми (аргинин, гистидин), т.е. их синтез происходит в недостаточном количестве, особенно это касается детей.

Незаменимые аминокислоты. Что такое незаменимые аминокислоты?

Незаменимые аминокислоты. Что такое незаменимые аминокислоты?

Незаменимые аминокислоты — это аминокислоты, которые не могут быть синтезированы в организме человека и обязательно должны поступать с белковой пищей. Напомним, что наука выделяет 22 наиболее важных аминокислоты, 8 из которых являются незаменимыми — валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан и фенилаланин. Для детей незаменимым также является аргинин.

Отсутствие или недостаток незаменимых аминокислот в питании приводит к нарушению обмена веществ (в частности, из-за создания отрицательно баланса азота в организме и нарушения биосинтеза белков). В результате ухудшается иммунитет, останавливаются различные функции восстановления и роста тканей, увеличивается риск возникновения нервных расстройств, депрессии и других психических нарушений.

В свою очередь, доступные в виде спортивного питания аминокислоты BCAA — это комбинация из лейцина, изолейцина и валина. Суточная потребность в этих трех аминокислотах составляет 5-6 г или половину от суммарной потребности во всех незаменимых аминокислотах. Употребление достаточного количества незаменимых аминокислот особенно важно для спортсменов, вегетарианцев и беременных женщин.

Функции незаменимых аминокислот

  • Валин  — необходим для метаболических процессов в мышцах, активно участвует в процессах восстановления после тренировок. Может быть использован мышцами в качестве дополнительного источника энергии.
  • Изолейцин —   необходим для синтеза гемоглобина, способствует нормальной свертываемости крови, защищая организм от инфекций. Увеличивает выносливость, способствует восстановлению и быстрому росту мышц.
  • Лейцин — регулирует уровень сахара в крови, ускоряет заживление ран и может являться источником энергии для мускулатуры. Способствует восстановлению костей, кожи, мышечной ткани. Снижает уровень холестерина и повышает выработку гормона роста.
  • Лизин —   необходим для формирования костей, способствует усвоению кальция. Эта незаменимая аминокислота участвует в синтезе антител, гормонов, ферментов, формировании коллагена и восстановлении тканей.
  • Метионин —   способствует нормальному пищеварению, сохранению здоровья печени, участвует в переработке жиров, защищает от воздействия токсинов и радиации.
  • Треонин —   способствует поддержанию нормального белкового обмена в организме, помогая при этом работе печени. Необходим для правильной работы иммунной системы.
  • Триптофан —   используется организмом для синтеза гормонов серотонина и мелатонина, являющихся важнейшими нейромедиаторами. Необходим при бессоннице, депрессии и для стабилизации настроения.
  • Фенилаланин  — нейромедиатор для нервных клеток головного мозга. Эффективно помогает при депрессии, артрите, мигрени, ожирении. Плохо усваивается при нехватке витамина С.

Аминокислоты свойства. Свойства аминокислот

Аминогруппа — NH2определяет основные свой­ства аминокислот, т. к. способна присоединять к себе катион водорода по донорно-акцепторному механизму за счет наличия свободной электронной пары у атома азота.

Группа —СООН (карбоксильная группа) опреде­ляет кислотные свойства этих соединений. Следовательно, аминокислоты — это амфотерные орга­нические соединения. Со щелочами они реагируют как кислоты:

С сильными кислотами- как основания-амины:

Кроме того, аминогруппа в аминокислоте всту­пает во взаимодействие с входящей в ее состав кар­боксильной группой, образуя внутреннюю соль:

Ионизация молекул аминокислот зависит от кислотного или щелочного характера среды:

Так как аминокислоты в водных растворах ве­дут себя как типичные амфотерные соединения, то в живых организмах они играют роль буферных веществ, поддерживающих определенную концен­трацию ионов водорода.

Аминокислоты представляют собой бесцветные кристаллические вещества, плавящиеся с разло­жением при температуре выше 200 °С. Они растворимы в воде и нерастворимы в эфире. В зависи­мости от радикала R— они могут быть сладкими, горькими или безвкусными.

Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтети­ческие. Среди природных аминокислот (около 150) выделяют протеиногенные аминокислоты (около 20), которые входят в состав белков. Они представляют собой L-формы. Примерно полови­на из этих аминокислот относятся к незамени­мым , т. к. они не синтезируются в организме че­ловека. Незаменимыми являются такие кислоты, как валин, лейцин, изолейцин, фенилаланин, ли­зин, треонин, цистеин, мети­онин, гистидин, триптофан. В организм человека данные вещества поступают с пи­щей. Если их количество в пище будет недостаточ­ным, нормальное развитие и функционирование орга­низма человека нарушаются. При отдельных заболеваниях организм не в состоянии син­тезировать и некоторые другие аминокислоты. Так, при фенилкетонурии не синтезируется тирозин. Важнейшим свойством аминокислот является способность вступать в молекулярную конденса­цию с выделением воды и образованием амидной группировки —NH—СО—, например:

Получаемые в результате такой реакции высокомолекулярные соединения  содержат большое число амидных фрагментов и поэтому получили название полимамидов.

К ним, кроме названного выше синтетического волок­на капрона, относят, напри­мер, и энант, образующийся при поликонденсации аминоэнантовой кислоты. Для получения синтетических во­локон пригодны аминокис­лоты с расположением амино- и карбоксильной групп на концах молекул.

Полиамиды альфа-аминокислот называются пепти­дами . В зависимости от числа остатков аминокислот различают дипептиды, трипептиды, полипепти­ды . В таких соединениях группы —NH—СО— на­зывают пептидными.

Изомерия и номенклатура аминокислот

Изомерия аминокислот определяется различ­ным строением углеродной цепи и положением аминогруппы, например:

Широко распространены также названия ами­нокислот, в которых положение аминогруппы обо­значается буквами греческого алфавита: α, β, у и т. д. Так, 2-аминобутановую кислоту можно на­звать также α-аминокислотой:

Способы получения аминокислот

В биосинтезе белка в живых организмах уча­ствуют 20 аминокислот.

Аминокислоты в продуктах. Продукты богатые аминокислотами:

Указано ориентировочное количество в 100 г продукта

Общая характеристика аминокислот

Аминокислоты принадлежат к классу органических соединений, используются организмом при синтезе гормонов, витаминов, пигментов и пуриновых оснований. Из аминокислот состоят белки. Растения и большинство микроорганизмов способны синтезировать все необходимые им для жизни аминокислоты самостоятельно, в отличие от животных и человека. Ряд аминокислот наш организм способен получать только из пищи.

Заменимые аминокислоты, вырабатываемые наши организмом – это глицин, пролин , аланин , цистеин , серин , аспарагин, аспартат, глутамин , глутамат, тирозин .

Хотя такая классификация аминокислот очень условна. Ведь гистидин, аргинин, например, синтезируется в организме человека, но не всегда в достаточном количестве. Заменимая аминокислота тирозин может стать незаменимой, в случае недостатка в организме фенилаланина.

Суточная потребность в аминокислотах

В зависимости от типа аминокислоты определяется ее суточная потребность для организма. Общая потребность организма в аминокислотах, зафиксированная в диетологических таблицах - от 0,5 до 2 грамм в день.

Потребность в аминокислотах возрастает:

  • в период активного роста организма;
  • во время активных профессиональных занятий спортом;
  • в период интенсивных физических и умственных нагрузок;
  • во время болезни и в период выздоровления.

Потребность в аминокислотах снижается:

При врожденных нарушениях, связанных с усваиваемостью аминокислот. В этом случае, некоторые белковые вещества могут стать причиной аллергических реакций организма, включая появление проблем в работе желудочно-кишечного тракта, зуд и тошноту.

Усваиваемость аминокислот

Скорость и полнота усвоения аминокислот зависит от типа продуктов, их содержащих. Хорошо усваиваются организмом аминокислоты, содержащиеся в белке яиц, обезжиренном твороге, нежирном мясе и рыбе.

Быстро усваиваются также аминокислоты при правильном сочетании продуктов: молоко сочетается с гречневой кашей и белым хлебом, всевозможные мучные изделия с мясом и творогом.

Полезные свойства аминокислот, их влияние на организм

Каждая аминокислота оказывает на организм свое воздействие. Так метионин особенно важен для улучшения жирового обмена в организме, используется как профилактика атеросклероза, при циррозе и жировой дистрофии печени.

При определенных нервно-психических заболеваниях используется глутамин, аминомасляные кислоты. Глутаминовая кислота также применяется в кулинарии как вкусовая добавка. Цистеин показан при глазных заболеваниях.

Три главные аминокислоты – триптофан, лизин и метионин, особенно необходимы нашему организму. Триптофан используется для ускорения роста и развития организма, также он поддерживает азотистое равновесие в организме.

Лизин обеспечивает нормальный рост организма, участвует в процессах кровеобразования.

Основные источники лизина и метионина – творог, говядина, некоторые виды рыбы (треска, судак, сельдь). Триптофан встречается в оптимальных количествах в субпродуктах, телятине и дичи.

Взаимодействие с эссенциальными элементами

Все аминокислоты растворимы в воде. Взаимодействуют с витаминами группы B, А, Е, С и некоторыми микроэлементами; участвуют в образовании серотонина, меланина, адреналина, норадреналина и некоторых других гормонов.