Белок из чего состоит. Полноценные и неполноценные белки – в чем разница?
Белок из чего состоит. Полноценные и неполноценные белки – в чем разница?
Белки (или протеины) являются важнейшими компонентами пищи (наряду с жирами, углеводами, витаминами, минералами и водой).
По мнению специалистов, их доля в суточном рационе должна составлять 10 – 15%. Сегодня мы поговорим о строении, а также различных видах белков.
Простые и сложные, животные и растительные, полноценные и неполноценные белки– в чем их отличие.
Белки – это высокомолекулярные вещества, имеющие сложное строение . Мы не способны усваивать их в том виде, в каком они поступают вместе с пищей, так как для нас они являются чужими.
Поэтому, попадая в организм, пищевые белки распадаются на небольшие структурные единицы — аминокислоты. Именно из аминокислот наш организм создает собственные, свойственные только ему белки, которые впоследствии использует на свои нужды.
Как известно из белков состоит наша кожа, волосы, ногти, мышцы и т.д. Кроме того белки (протеины) являются неотъемлемой частью спортивного питания.
Всего насчитывается 20 аминокислот. В их состав входит кислород, водород, углерод, азот, иногда сера и фосфор.
Часть аминокислот образуются в самом организме благодаря кишечным бактериям. Такие аминокислоты называются заменимыми.
Но существуют также 8 незаменимых аминокислот:
- триптофан;
- лизин;
- валин;
- лейцин;
- изолейцин;
- фенилаланин;
- метионин;
- треонин;
- а также гистидин (для детей).
Незаменимые аминокислоты отсутствуют в организме, поэтому обязательно должны поступать вместе с пищевыми продуктами.
Стоит отметить, что в организме человека существует около 5 миллионов различных белков, каждый из которых выполняет свою конкретную функцию.
Своим многообразием протеины обязаны именно аминокислотам. Последние, соединяясь друг с другом, образуют самые разнообразные комбинации.
Рассмотрим более подробно виды белков:
1. Простые и сложные. Первые состоят только из аминокислот (белковой части), в состав же последних входит еще простетическая группа (небелковая часть).
2. Животные (мясо, рыба, птица, молочные продукты) и растительные (орехи, соя, горох, фасоль). При этом на животные белки должно приходится около 60%.
3. Полноценные и неполноценные белки . Полноценные белки включают все незаменимые аминокислоты, которые самостоятельно в организме не образуются.
Полноценные белки содержатся в продуктах животного происхождения, а также некоторой растительной пище (горох, фасоль, соя).
Стоит отметить, что самым ценным является белок куриного яйца, который содержит полный набор аминокислот в нужных пропорциях.
Кроме того 200 г говядины или 200 г трески или 1,5 л молока способны обеспечить организм человека массой 70 кг всеми незаменимыми аминокислотами.
В неполноценных белках те или иные незаменимые аминокислоты содержатся в незначительных количествах либо же полностью отсутствуют.
Многие растительные белки являются неполноценными, например, некоторые злаки (пшеница, ячмень и другие). Они бедны лизином, триптофаном, треонином и метионином.
Для повышения биологической ценности хлеба в него добавляют лизин.
4. Глобулярные (имеют сферическую форму) и фибриллярные (имеют вытянутую нитевидную форму).
Одни глобулярные белки такие, как альбумины и глобулины, содержатся в яичном белке, молоке, а также сыворотке крови.
Источниками других, например, глютелинов и проламинов, служат растительные белки (пшеница, ячмень, кукуруза и другие).
Фибриллярные белки в основном являются животными белками и выполняют структурную функцию в организме.
К ним относятся коллаген (белок хрящевой, костной и соединительной ткани), эластин (белок соединительной ткани мышц, связок и сосудов), кератины (белки кожи, волос и ногтей).
5. Высококачественные (мясо, рыба, птица, соя, яйца, сыр, молоко) и низкокачественные (картофель, макароны, рис, хлеб, орехи, бобы).
Итак, мы узнали, из чего состоят протеины, чем отличаются полноценные белки от неполноценных, а также познакомились с другими видами белков.
В следующей статье мы поговорим о том, чем полезен белок для организма, каковы его функции.
Свойства белков. Физико-химические свойства белков
Белки имеют высокий молекулярный вес.
Заряд белковой молекулы. Все белки имеют хоть одну свободную -NH и - СООН группы.
Белковые растворы - коллоидные растворы с разными свойствами. Белки бывают кислыми и основными. Кислые белки содержат много глу и асп, у которых есть дополнительные карбоксильные и меньше аминогрупп. В щелочных белках много лиз и арг. Каждая молекула белка в водном растворе окружена гидратной оболочкой, так как у белков за счет аминокислот есть много гидрофильных группировок (-СООН, -ОН, -NH2, -SH). В водных растворах белковая молекула имеет заряд. Заряд белка в воде может меняться в зависимости от РН.
Осаждение белков. У белков есть гидратная оболочка, заряд, препятствующий склеиванию. Для осаждения необходимо снять гидратную оболочку и заряд.
1.Гидратация. Процесс гидратации означает связывание белками воды, при этом они проявляют гидрофильные свойства: набухают, их масса и объем увеличивается. Набухание белка сопровождается его частичным растворением. Гидрофильность отдельных белков зависит от их строения. Имеющиеся в составе и расположенные на поверхности белковой макромолекулы гидрофильные амидные (–CO–NH–, пептидная связь), аминные (NH2) и карбоксильные (COOH) группы притягивают к себе молекулы воды, строго ориентируя их на поверхность молекулы. Окружая белковые глобулы гидратная (водная) оболочка препятствует устойчивости растворов белка. В изоэлектрической точке белки обладают наименьшей способностью связывать воду, происходит разрушение гидратной оболочки вокруг белковых молекул, поэтому они соединяются, образуя крупные агрегаты. Агрегация белковых молекул происходит и при их обезвоживании с помощью некоторых органических растворителей, например этило- вого спирта. Это приводит к выпадению белков в осадок. При изменении pH среды макромолекула белка становится заряженной, и его гидратационная способность меняется.
Виды белков. Аминокислотный состав белков
Белки — непериодические полимеры, мономерами которых являются α-аминокислоты . Обычно в качестве мономеров белков называют 20 видов α-аминокислот, хотя в клетках и тканях их обнаружено свыше 170.
В зависимости от того, могут ли аминокислоты синтезироваться в организме человека и других животных, различают: заменимые аминокислоты — могут синтезироваться; незаменимые аминокислоты — не могут синтезироваться. Незаменимые аминокислоты должны поступать в организм вместе с пищей. Растения синтезируют все виды аминокислот.
В зависимости от аминокислотного состава, белки бывают: полноценными — содержат весь набор аминокислот; неполноценными — какие-то аминокислоты в их составе отсутствуют. Если белки состоят только из аминокислот, их называют простыми . Если белки содержат помимо аминокислот еще и неаминокислотный компонент (простетическую группу), их называют сложными . Простетическая группа может быть представлена металлами (металлопротеины), углеводами (гликопротеины), липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеины).
Все аминокислоты содержат : 1) карбоксильную группу (–СООН), 2) аминогруппу (–NH2), 3) радикал или R-группу (остальная часть молекулы). Строение радикала у разных видов аминокислот — различное. В зависимости от количества аминогрупп и карбоксильных групп, входящих в состав аминокислот, различают: нейтральные аминокислоты , имеющие одну карбоксильную группу и одну аминогруппу; основные аминокислоты , имеющие более одной аминогруппы; кислые аминокислоты , имеющие более одной карбоксильной группы.
Аминокислоты являются амфотерными соединениями , так как в растворе они могут выступать как в роли кислот, так и оснований. В водных растворах аминокислоты существуют в разных ионных формах.
Белки биохимия. Амфотерность
Так как белки содержат кислые и основные аминокислоты, то в их составе всегда имеются свободные кислые (СОО–) и основные (NH3+) группы.
Заряд белка зависит от соотношения количества кислых и основных аминокислот. Поэтому, аналогично аминокислотам, белки заряжаются положительно при уменьшении рН, и отрицательно при его увеличении. Если рН раствора соответствует изоэлектрической точке белка, то заряд белка равен 0.
Если в пептиде или белке преобладают основные аминокислоты (лизин и аргинин), то при нейтральных рН заряд белка положительный, т.к. обусловлен положительным зарядом радикала этих аминокислот.
Если в белке преобладают кислые аминокислоты (глутамат и аспартат), то белок кислый, при нейтральных рН заряд белка отрицательный и изоэлектрическая точка находится в кислой среде. Для большинства природных белков изоэлектрическая точка находится в диапазоне рН 4,8-5,4, что свидетельствует о преобладании в их составе глутаминовой и аспарагиновой аминокислот.
Амфотерность имеет значение для выполнения белками некоторых функций. Например,белков, т.е. способность поддерживать стабильность рН крови , основаны на способности присоединять ионы Н+при закислении среды или отдавать их при защелачивании.
С практической стороны наличие амфотерности позволяет разделять белки по заряду ( электрофорез ) или использовать изменение величины рН раствора для осаждения какого-либо известного белка. Наличие как положительных, так и отрицательных зарядов в белке обусловливает их способность к, что удобно для выделения белков в нативной (живой) конформации.
Белки функции. Ферменты
Стоит сказать кратко о каталитической функции белков. Ферменты или энзимы выделяют в особую группу белков. Они осуществляют катализ – ускорение протекания химической реакции.
В соответствии со строением ферменты могут быть:
- простыми – содержат только аминокислотные остатки;
- сложными – помимо белкового мономерного остатка включают небелковые структуры, которые называются кофактором (витамины, катионы, анионы).
Молекулы ферментов имеют активную часть (активный центр), связывающую белок с веществом – субстратом. Каждый фермент «узнаёт» определённый субстрат и связывается именно с ним. Активный центр обычно представляет собой «карман», в который попадает субстрат.
Связывание активного центра и субстрата описывается моделью индуцированного соответствия (модель «рука-перчатка»). Модель показывает, что фермент «подстраивается» под субстрат. Благодаря изменению структуры снижаются энергия и сопротивление субстрата, что помогает ферменту легче перенести его на продукт.
Рис. 3. Модель «рука-перчатка».
Активность ферментов зависит от нескольких факторов:
- температуры;
- концентрации фермента и субстрата;
- кислотности.
Различают 6 классов ферментов, каждый из которых взаимодействует с определёнными веществами. Например, трансферазы переносят фосфатную группу от одного вещества к другому.
Ферменты могут ускорять реакцию в 1000 раз.
Что мы узнали?
Выяснили, какие функции выполняют белки в клетке, как они устроены и как синтезируются. Белки представляют собой полимерные цепочки, состоящие из аминокислот. Всего известно 200 аминокислот, но белки могут образовывать только 20. Белковые полимеры синтезируются на рибосомах. Белки выполняют важные функции в организме: переносят вещества, ускоряют биохимические реакции, контролируют процессы, происходящие в организме. Ферменты связывают субстрат и целенаправленно переносят его на вещества, ускоряя реакции в 100-1000 раз.
Структура белков. Третичная структура
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии , проверенной 18 апреля 2018; проверки требуют 4 правки .
Разные способы изображения трёхмерной структуры белка на примере фермента триозофосфатизомеразы. Слева — «палочковая» модель, с изображением всех атомов и связей между ними; цветами показаны элементы. В середине изображены структурные мотивы: α-спирали и β-листы. Справа изображена контактная поверхность белка, построенная с учётом ван-дер-ваальсовых радиусов атомов; цветами показаны особенности активности участковТретичной структурой белка называется способ укладки полипептидной цепи в пространстве. По форме третичной структуры белки делятся в основном на глобулярные и фибриллярные. Глобулярные белки чаще всего имеют эллипсовидную форму, а фибриллярные (нитевидные) белки — вытянутую (форма палочки, веретена).
Однако конфигурация третичной структуры белков еще не дает основания думать, что фибриллярные белки имеют только β-структуру, а глобулярные α-спиральные. Есть фибриллярные белки, имеющие спиральную, а не слоисто-складчатую вторичную структуру. Например, α-кератин и парамиозин (белок запирательной мышцы моллюсков), тропомиозины (белки скелетных мышц) относятся к фибриллярным белкам (имеют палочковидную форму), а вторичная структура у них — α-спираль; напротив, в глобулярных белках может быть большое количество β-структур.
Спирализация линейной полипептидной цепи уменьшает ее размеры примерно в 4 раза; а укладка в третичную структуру делает ее в десятки раз более компактной, чем исходная цепь.
Третичная структура в значительной степени определяется первичной структурой . Усилия по предсказанию третичной структуры белка, основываясь на его первичной структуре, известны как задача предсказания структуры белка . Окружающая среда, в которой белок сворачивается, существенно влияет на его конечную форму, но обычно непосредственно не принимается во внимание текущими методами предсказания. Большинство таких методов полагаются на сравнения с уже известными структурами, и таким образом учитывают влияние окружающей среды косвенно.
В стабилизации третичной структуры белка принимают участие:
Третичную структуру имеют также многие молекулы нуклеиновых кислот ; в частности, универсальную третичную структуру имеют молекулы тРНК .